Spirometry, COPD and lung cancer

Associate Professor Robert Young BMedSc, MBChB, DPhil (Oxon), FRACP, FRCP

> University of Auckland, New Zealand

Spirometry for those with smoking and dust exposures

Risk assessment	DiseaseOutcome				
Blood pressure	HypertensionStroke				
Lipids	Hypercholesterolaemia	nia Heart attack			
Glucose	Hyperglycaemia Diabetes				
Bone density	Osteoporosis#	Fracture (low impact)			
Spirometry	Airways obstruction#	COPD			
		Heart attack			
		Lung cancer			
# Diagnose end organ damage (coronary angiogram or CT chest)					

Smoking and lung disease

Smoking and its complications

Epidemiology of lung cancer

- Smoking (90%)
 - Duration over 30 years or over 30 pk years
- Age (over 50 yo)
- Other factors
 - Exposure to asbestos, radon, radiation and cooking fuels

Genetic factors

- Low consumption of fruit and vegetables (antioxidants)
- Lower risk in atopics
- Lung function
- Family history

Decline of Lung Function: Not Homogeneous

Lung function in smokers who get COPD

Segmentation of Lung Function Decline

Reduced FEV₁: linked to all cause mortality

8

Lung Function and Lung Cancer

Consistently reported risk of 3-6x for lung cancer in smokers with impaired lung function

Eur Respir J 2009; 34: 1–7 DOI: 10.1183/09031936.00144208 Copyright/0ERS Journa's Ltd 2009

COPD prevalence is increased in lung cancer independent of age, sex and smoking history

R.P. Young*, R.J. Hopkins*, T. Christmas[#], P.N. Black¹, P. Metcalf⁺ and G.D. Gamble*

Lifetime risk: COPD and lung cancer

11

Smoking, lung function and lung cancer

Parallel:

Obesity predisposes to diabetes

Lung Cancer Risk climbs steeply with age

10 Year Mortality for Lung Cancer by Smoking Status

Risk spectrum for lung cancer risk

Lung cancer and age distribution

15

Inflammation and cardio-pulmonary disease

accelerated atherosclerosis

Proposed Pathogenesis of COPD

Young RP, et al. (submitted)

Proposed Pathogenesis of Lung Cancer

Young RP, et al. (submitted)

Spirometry for those with smoking and dust exposures

Risk assessment	DiseaseOutcome				
Blood pressure	Hypertension	Stroke			
Lipids	Hypercholesterolaemia	Heart attack			
Glucose	Hyperglycaemia	a Diabetes			
Bone density	Osteoporosis#	Fracture (low impact)			
Spirometry	Airways obstruction#	COPD			
		Heart attack			
		Lung cancer			
# Diagnose end organ damage (coronary angiogram or CT chest)					

Genetic susceptibility to lung cancer

Many genetic variants Interaction with smoking Affect many different pathways

Overlap between genes conferring COPD and lung cancer

nAChR gene* locus associated with lung cancer, COPD and nicotine addiction

No one is lower than average risk for lung cancer

Lung cancer susceptibility score

- •Educational tool to personalise risk and raise awareness of lung cancer
- •Refines existing risk derived from smoking exposure
- •Based on age, FHx of lung cancer, COPD and SNP markers
- •Target 40+ yr old who are smokers and ex-smokers (last 10 years)
- •Aim to motivate smoker to quit or ex-smoker to avoid relapse
- •Referenced against the "average" smoker's risk

•Shows risk reduction with quitting

Epidemiology of lung cancer

- Smoking (90%)
 - Duration over 30 years or over 30 pk years
- Age (over 50 yo)
- Other factors
 - Asbestos, radon, radiation, cooking fuels
 - Low consumption of fruit and vegetables (antioxidants)
 - Lower risk in atopics
- Lung function
- Family history

April 2008 – "Lung cancer" gene discovered

Headlines

- NY times
- Herald Tribune
- Financial Times
- NZ Herald

LETTERS

A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25

Rayjean J. Hung^{1,2*}, James D. McKay^{1*}, Valerie Gaborieau¹, Paolo Boffetta¹, Mia Hashibe¹, David Zaridze³, Anush Mukeria³, Neonilia Szeszenia-Dabrowska⁴, Jolanta Lissowska⁵, Peter Rudnai⁶, Eleonora Fabianova⁷, Dana Mates⁸, Vladimir Bencko⁹, Lenka Foretova¹⁰, Vladimir Janout¹¹, Chu Chen¹², Gary Goodman¹², John K. Field¹³, Triantafillos Liloglou¹³, George Xinarianos¹³, Adrian Cassidy¹³, John McLaughlin¹⁴, Geoffrey Liu¹⁵, Steven Narod¹⁶, Hans E. Krokan¹⁷, Frank Skorpen¹⁷, Maiken Bratt Elvestad¹⁷, Kristian Hveem¹⁷, Lars Vatten¹⁷, Jakob Linseisen¹⁸, Françoise Clavel-Chapelon¹⁹, Paolo Vineis^{20,21}, H. Bas Bueno-de-Mesquita²², Eiliv Lund²³, Carmen Martinez²⁴, Sheila Bingham²⁵, Torgny Rasmuson²⁶, Pierre Hainaut¹, Elio Riboli²⁰, Wolfgang Ahrens²⁷, Simone Benhamou^{28,29}, Pagona Lagiou³⁰, Dimitrios Trichopoulos³⁰, Ivana Holcátová³¹, Franco Merletti³², Kristina Kjaerheim³³, Antonio Agudo³⁴, Gary Macfarlane³⁵, Renato Talamini³⁶, Lorenzo Simonato³⁷, Ray Lowry³⁸, David I. Conway³⁹, Ariana Znaor⁴⁰, Claire Healy⁴¹, Diana Zelenika⁴², Anne Boland⁴², Marc Delepine⁴², Mario Foglio⁴², Doris Lechner⁴², Fumihiko Matsuda⁴², Helene Blanche⁴³, Ivo Gut⁴², Simon Heath⁴³, Mark Lathrop^{42,43} & Paul Brennan¹

nature

Vol 452|3 April 2008| doi:10.1038/nature06846

LETTERS

A variant associated with nicotine dependence, lung cancer and peripheral arterial disease

Thorgeir E. Thorgeirsson¹*, Frank Geller¹*, Patrick Sulem¹*, Thorunn Rafnar¹*, Anna Wiste^{1,2}, Kristinn P. Magnusson¹, Andrei Manolescu¹, Gudmar Thorleifsson¹, Hreinn Stefansson¹, Andres Ingason¹, Simon N. Stacey¹, Jon T. Bergthorsson¹, Steinunn Thorlacius¹, Julius Gudmundsson¹, Thorlakur Jonsson¹, Margret Jakobsdottir¹, Jona Saemundsdottir¹, Olof Olafsdottir¹, Larus J. Gudmundsson¹, Gyda Bjornsdottir¹, Kristleifur Kristjansson¹, Halla Skuladottir³, Helgi J. Isaksson⁴, Tomas Gudbjartsson⁵, Gregory T. Jones⁸, Thomas Mueller⁹, Anders Gottsäter¹⁰, Andrea Flex¹¹, Katja K. H. Aben^{12,13}, Femmie de Vegt¹², Peter F. A. Mulders¹⁴, Dolores Isla¹⁵, Maria J. Vidal¹⁵, Laura Asin¹⁶, Berta Saez¹⁷, Laura Murillo¹⁸, Thorsteinn Blondal¹⁹, Halldor Kolbeinsson⁶, Jon G. Stefansson⁶, Ingunn Hansdottir²⁰, Valgerdur Runarsdottir²⁰, Roberto Pola^{11,21}, Bengt Lindblad¹⁰, Andre M. van Rij⁸, Benjamin Dieplinger⁹, Meinhard Haltmayer⁹, Jose I. Mayordomo^{15,16,17}, Lambertus A. Kiemeney^{12,13,14}, Stefan E. Matthiasson²², Hogni Oskarsson²³, Thorarinn Tyrfingsson²⁰, Daniel F. Gudbjartsson¹, Jeffrey R. Gulcher¹, Steinn Jonsson⁷, Unnur Thorsteinsdottir^{1,22}, Augustine Kong¹ & Kari Stefansson^{1,22}

LETTERS

genetics

Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1

Christopher I Amos¹, Xifeng Wu¹, Peter Broderick², Ivan P Gorlov¹, Jian Gu¹, Timothy Eisen³, Qiong Dong¹, Qing Zhang¹, Xiangjun Gu¹, Jayaram Vijayakrishnan², Kate Sullivan², Athena Matakidou², Yufei Wang², Gordon Mills⁴, Kimberly Doheny⁵, Ya-Yu Tsai⁵, Wei Vivien Chen¹, Sanjay Shete¹, Margaret R Spitz^{1,6} & Richard S Houlston^{2,6}

Eur Respir J 2008; 32: 1–7 DOI: 10.1183/09031936.00093908 Copyright@ERS Journals Ltd 2008

Lung cancer gene associated with COPD: triple whammy or possible confounding effect?

R.P. Young**, R.J. Hopkins*, B.A. Hay*, M.J. Epton¹, P.N. Black* and G.D. Gamble*

Nicotinic acetylcholine receptor SNP

-Chromosome 15q25 (GWAS) -associated with lung cancer, COPD and nicotine addiction -Nicotine up-regulates inflammation in the lung -SNP appears to be involved in modifying this inflammatory effect

- SNPs associated with both diseases

Lung cancer genetics: Auckland Study

Genotypes for the α5 subunit of the nAChR gene (Young RP, et al. ERJ Nov 2008)

Primay Cohorts (call rate %)	GG	GA	AA	OR* (95% CI)	P value*
Controls N=475 (97%)	225 (47%)	205 (43%)	45 (9%)	-	-
COPD N=445 (97%)	166 (37%)	219 (49%)	60 (14%)	1.5 (1.0-2.3)	0.06
Lung cancer N=437 (96%)	170 (39%)	199 (46%)	68 (16%)	1.8 (1.2-2.7)	0.005
Subgroup Analyses					
COPD and LC+COPD, N=706	252 (36%)	344 (49%)	110 (16%)	1.8 (1.2-2.6)	0.002
LC + COPD [#] , N=261	86 (33%)	125 (48%)	50 (19%)	2.3 (1.4-3.6)	0.0002
LC only, N=168	81 (48%)	69 (41%)	18 (11%)	1.2 (0.6-2.1.)	0.64

Clinical utility of spirometry

Reduced FEV₁ (compared to normal lung function)

- Predicts increased risk of coronary artery disease
- Predicts increased risk of lung cancer
- Predicts increased risk of stroke
- Predicts increased risk of peripheral arterial disease

Smoking, lung function and mortality

↓FEV₁ = "barometer" of a person's tendency (or susceptibility) to exaggerated airway inflammation and adverse remodeling.

Clinical implications of detecting COPD

- Increased cardiovascular and lung cancer risk and urgent need for aggressive smoking cessation
- Inclusion of COPD in lung cancer risk models
- Consideration of statin therapy in increased cardiovascular risk
- Initiation of usual inhaler therapy for symptom control

Proposed Pathogenesis of Lung Cancer

Smoking and its complications

