

Management of metastatic colorectal cancer

Adam Bartlett PhD, FRACS Hepato-pancreatico-biliary (HPB), General and Transplant Surgeon

"It is impossible to be a competent surgeon without using higher-order cognitive skills"

Spencer et al Bulletin of the American College of Surgery, 64, 9-12 1978.

NZ Cancer Registrations and Deaths

New Zealand Cancer registrations 2010

NZHIS 2013

NZ has high death rates from colorectal cancer

NZ has high death rates from colorectal cancer

Bowel cancer mortality: What's happening over time?

Shaw C, Blakely T, Sarfati D, et al. Trends in colorectal cancer mortality by ethnicity and socioeconomic position in New Zealand 1981-1999: One country, many stories. *Aust NZ J Public Health*. 2006; 30 (1): 64-70.

Metastatic colorectal cancer common

A multidisciplinary team approach

Strategies for managing metastatic colorectal cancer

- Surgical resection
- Chemotherapy
- Radiotherapy
- Tissue ablation
- Liver directed therapy

Strategies for managing metastatic colorectal cancer

- Chemotherapy
- Radiotherapy
- Tissue ablation
- Liver directed therapy

Prognosis relative to treatment

Traditional resection criteria

- Unilobar disease
- < 2 lesions
- > 1cm margin achievable
- Negative portal node
- No extra-hepatic disease

Traditional resection criteria

- Unilobar disease
- < 2 lesions</p>
- > 1cm margin achievable
- Negative portal node
- No extra-hepatic disease

Available online at www.sciencedirect.com

EJSO 33 (2007) 468-473

Prognostic influence of multiple hepatic metastases from colorectal cancer

H.Z. Malik, Z.Z.R. Hamady, R. Adair, R. Finch, A. Al-Mukhtar, G.J. Toogood, K.R. Prasad, J.P.A. Lodge*

HPB and Transplant Unit, St. James's University Hospital, Leeds LS9 7TF, UK

Accepted 28 September 2006

Number	5yr survival:		
< 4 4-7	44% 39%		
>8	24%		

Figure 2. Overall survival comparing the groups for increasing numbers of metastases. Patients with less than 4 metastases, solid bold line; patients with 4–7 metastases, interrupted line; patients with 8 or more metastases, solid thin line. p = 0.0245 (comparing 4–7 tumours with 8 or more tumours).

ORIGINAL ARTICLES

Effect of Surgical Margin Status on Survival and Site of Recurrence After Hepatic Resection for Colorectal Metastases

Timothy M. Pawlik, MD, MPH,* Charles R. Scoggins, MD,* Daria Zorzi, MD,* Eddie K. Abdalla, MD,* Axel Andres, MD, Cathy Eng, MD,† Steven A. Curley, MD,* Evelyne M. Loyer, MD,‡ Andrea Muratore, MD,§ Gilles Mentha, MD, Lorenzo Capussotti, MD,§ and Jean-Nicolas Vauthey, MD*

Annals of Surgery • Volume 241, Number 5, May 2005

ORIGINAL ARTICLES

Effect of Surgical Margin Status on Survival and Site of Recurrence After Hepatic Resection for Colorectal Metastases

Timothy M. Pawlik, MD, MPH,* Charles R. Scoggins, MD,* Daria Zorzi, MD,* Eddie K. Abdalla, MD,* Axel Andres, MD, Cathy Eng, MD,† Steven A. Curley, MD,* Evelyne M. Loyer, MD,‡ Andrea Muratore, MD,§ Gilles Mentha, MD, Lorenzo Capussotti, MD,§ and Jean-Nicolas Vauthey, MD*

Annals of Surgery • Volume 241, Number 5, May 2005

Ann Surg Oncol (2011) 18:1380–1388 DOI 10.1245/s10434-010-1459-4 Annals of

SURGICAL ONCOLOGY

ORIGINAL ARTICLE – COLORECTAL CANCER

Liver Resection for Colorectal Metastases in Presence of Extrahepatic Disease: Results from an International Multi-institutional Analysis

Carlo Pulitanò, MD^{1,2}, Martin Bodingbauer, MD³, Luca Aldrighetti, MD, PhD², Mechteld C. de Jong, MD⁴, Federico Castillo, MD, PhD¹, Richard D. Schulick, MD⁴, Rowan W. Parks, MD¹, Michael A. Choti, MD⁴, Stephen J. Wigmore, MD, PhD¹, Thomas Gruenberger, MD³, and Timothy M. Pawlik, MD, MPH⁴

¹Department of Clinical and Surgical Sciences (Surgery), Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK; ²Department of Surgery, Liver Unit, Scientific Institute San Raffaele, Vita-Salute San Raffaele University, Milan, Italy; ³Department of General Surgery, Hepatobiliary Service, Medical University of Vienna, Vienna, Austria; ⁴Division of Surgical Oncology, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD

Site	n (%)	Median survival (mo)	3-Year survival (%)	5-Year survival (%)
Lung	62 (36.2)	46	60	33
Peritoneum	25 (14.6)	32	32	26
Hepatic pedicle lymph nodes	41 (23.9)	29	43	27
Aortocaval lymph nodes	14 (8.1)	13	22	7
Other	11 (6.5)	_ ^a	_a	_a
Multiple sites	18 (10.5)	15	26	14

^a Number of patients too small for survival calculations

Management of metastatic colorectal cancer

Simultaneous bowel and metastases

Hepatectomy after primary

Primary after hepatectomy

Chemotherapy prior to either resection

Management of metastatic colorectal cancer

- Simultaneous bowel and metastases
- Hepatectomy after CRCa primary
- CRCa primary after hepatectomy

Chemotherapy prior to either resection

Order does not appear to be important – need to ensure patient receives both surgery and chemotherapy

Chemotherapy - Important questions

- Is adjuvant chemotherapy beneficial?
- Is preoperative (downsizing) chemotherapy beneficial in
 - Unresectable ?
 - Bordeline resectable ?
 - Unfit ?
- Is preoperative (neoadjuvant) chemotherapy justified for resectable lesions ?

Chemotherapy - Important questions

- Is adjuvant chemotherapy beneficial ?
 PROBABLY
- Is preoperative (downsizing) chemotherapy beneficial in
 - Unresectable ? YES
 - Bordeline resectable ? YES
 - Unfit ?
- Is preoperative (neoadjuvant) chemotherapy justified for resectable lesions ?

YFS

Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial

Bernard Nordlinger, Halfdan Sorbye, Bengt Glimelius, Graeme J Poston, Peter M Schlag, Philippe Rougier, Wolf O Bechstein, John N Primrose, Euan T Walpole, Meg Finch-Jones, Daniel Jaeck, Darius Mirza, Rowan W Parks, Laurence Collette, Michel Praet, Ullrich Bethe, Eric Van Cutsem, Werner Scheithauer, Thomas Gruenberger for the EORTC Gastro-Intestinal Tract Cancer Group, * Cancer Research UK, * Arbeitsgruppe Lebermetastasen und-tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO), * Australasian Gastro-Intestinal Trials Group (AGITG), * and Fédération Francophone de Cancérologie Digestive (FFCD) *

- 35% vs 24% disease free survival at three years for FOLFOX group
- No overall survival advantage
- More surgery related complications in the FOLFOX group (25% vs 16%)

Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial

Bernard Nordlinger, Halfdan Sorbye, Bengt Glimelius, Graeme J Poston, Peter M Schlag, Philippe Rougier, Wolf O Bechstein, John N Primrose, Euan T Walpole, Meg Finch-Jones, Daniel Jaeck, Darius Mirza, Rowan W Parks, Murielle Mauer, Erik Tanis, Eric Van Cutsem, Werner Scheithauer, Thomas Gruenberger, for the EORTC Gastro-Intestinal Tract Cancer Group, Cancer Research UK, Arbeitsgruppe Lebermetastasen und-tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO), Australasian Gastro-Intestinal Trials Group (AGITG), and Fédération Francophone de Cancérologie Digestive (FFCD)

Lancet 2008; 371:1007-16

Annals of SURGICALONCOLOGY OFFICIAL JOURNAL OF THE SOCIETY OF SURGICAL ONCOLOGY

ORIGINAL ARTICLE – HEPATOBILIARY AND PANCREATIC TUMORS

Timing of Multimodality Therapy for Resectable Synchronous Colorectal Liver Metastases: A Retrospective Multi-Institutional Analysis

Srinevas K. Reddy¹, Daria Zorzi², Ying Wei Lum³, Andrew S. Barbas¹, Timothy M. Pawlik³, Dario Ribero², Eddie K. Abdalla³, Michael A. Choti², Clinton Kemp³, Jean-Nicolas Vauthey², Michael A. Morse⁴, Rebekah R. White¹, and Bryan M. Clary¹

¹Department of Surgery, Duke University Medical Center, Box 3247, Durham, NC 27710, USA; ²Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; ³Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; ⁴Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA

Other issues with chemotherapy:

 Trial of time versus progression on chemotherapy

• Disappearing lesions

• Liver damage post chemotherapy

• Delay to surgery after chemotherapy

Response on chemo an important predictor

- Studies including selected patients (liver metastases only, no extrahepatic disease) (r=0.96; p=0.002)
- ▲ Studies including nonselected patients with mCRC (solid line) (r=0.74; p<0.001)</p>
- Phase III studies including nonselected patients with mCRC (dashed line) (r=0.67; p=0.024)

Complete response of CRCa liver metastases

Benoist S, et al., J Clin Oncol 2006; 24(24):393

Tumour better but liver worse!

Not observed <6 cycles

Bilchik, et al., J Clin Oncol 2005; 23:9073

Recommendation

Resectable hepatic disease with other favorable factors Straight to resection

Reality for most patients

Disease is beyond resectability

Strategies to improve resectability

Reduce size index lesion remnant

Chemotherapy Targeted ablation Liver directed therapy Increase size future liver

Portal vein embolisation 2-stage hepatectomy ALPS resection

Neoadjuvant Oxaliplatin: Paul Brousse Hospital study

Adam R, et al. Ann. Surg. Oncol. 2001; 8: 347-353. (Updated at GI Cancer Symposium 2007)

Survival of Liver Metastases based on initial resectability

Adam R. Ann Oncol. 2003;14(suppl 2):ii13-ii16.

Portal vein embolisation (PVE)

"... to initiate compensatory hypertrophy of the future remnant liver, thus preventing postoperative liver failure."

Makuuchi et al. Surgery 1990; 107: 521-7

PVE of right portal vein

Portogram

Emolisation

Post embolisation

Effect of PVT on CT follow-up imaging

Post-PVE

Pre-PVE

Liver directed therapies

Irinotecan loaded Microspheres (DEBIRI)

- Catheter minimally invasive therapy
- Polyvinyl alcohol microspheres
- Ischaemia and drug delivery
- Single treatment event
- No systemic effects

Response

Response	3-months	6-months	12-months
Complete	8	9	12
Partial	35	22	22
Stable	19	30	36
Progression	3	13	18

Compared to best supportive care, RR 2-5% at 3-6 months

Radio-embolisation (SIRT)

- Yttrium-90 is a beta emitter with t1/2 64 hours
- Maximum range of penetration 11mm (mean 2.5m)
- Normal liver poor tolerance to DXR
- Blood supply of liver tumors almost entirely arterial
- Able to administer selectively by a minimally invasive technique

Salvage therapy of treatment refractory disease

Lead Author	n	Treatment	Cohort	ORR	SD	Median TTP [∆] or PFS [‡]	Median Survival
Salvage Thera Hendlisz ²⁷	py of 1 44	Treatment-Refractory Disease SIR-Spheres ⁺ + 5FU <i>vs</i> . 5FU (> SIR-Spheres ⁺ at PD)	LO LO	10% 0%	76% 35% P = 0.001	5.5 months ^{AL} HR: 0.38 2.1 months ^{AL} P = 0.003	10.0 months 7.3 months
Seidensticker ²⁸	29 29	SIR-Spheres ⁺ vs. BSC matched pairs	LD LD	41.4% nr	17.2% nr	5.5 months [‡] ^{nr} 2.1 months [‡]	8.3 months HR: 0.26 3.5 months P < 0.001
Bester ²⁹	224 29	SIR-Spheres [†] vs. conventional therapy or BSC	LD LD	nr nr	nr nr	nr nr	11.9 months HR: 0.50 6.6 months P< 0.001
Cosi melli ³⁰	50	SIR-Spheres [†]	LD	24%	24%	4 months [‡]	12.6 months
Sofocleous ³¹	19	SIR-Spheres [†]	LD	70.	6% ^{DCR}	6 months [‡]	16.0 months
Kennedy ³²	606§	SIR-Spheres [†]	LD	nr	nr	nr	9.6 months
Sofocleous ³³	18 [§]	SIR-Spheres [†]	LD	40.	0% ^{DCR}	5.1 months [‡]	7.4 months
Leoni ³⁴	51 [§]	SIR-Spheres [†]	LD	24% ^c		nr	8.0 months
Nace ³⁵	51 [§]	SIR-Spheres [†] (+ FUDR HAC) ^{33%}	LD LO	12.9%	64.5%		10.2 months 17.0 months
Cianni ³⁶	41 [§]	SIR-Spheres [†]	LD	46%	36%	9.3 months [‡]	11.8 months
Jakobs ³⁷	4 1§	SIR-Spheres [†]	LD	17%	61%	5.9 months ^{∆L}	10.5 months
Kennedy ³⁸	208§	SIR-Spheres ⁺ responders non-responders & historical controls	LD	35.5% ^w	55%	nr	10.5 months 4.5 months P = 0.0001

Chemo-refractory liver dominant disease

Appears to be a clear benefit in survival for unresectable, heavily pre-treated CRCa liver metastases

Local ablative therapies

- Percutaneous ethanol injection (PEI)
- Cryotherapy
- Microwave coagulation therapy (MCT)
- Laser induced thermotherapy (LITT)
- Radiofrequency ablation (RFA)
- Microwave ablation (MWA)
- Nano-knife

Radiofrequency ablation of CRCa liver metastases

- Systematic review¹ 2 comparative studies, 11 case series
- Post procedure complication rate 0-33%
- Shorter survival than surgical resection
- Local recurrence rate 4-55%

	RFA	Resection		
Survival (months)	44 (median)	54 (mean)		
5-year survival (%)	40	53		

For lesions <3 cm, RFA and resection probably equivalent²

¹Sutherland et al., Arch Surg 2006; 141:181-90 ²Mulier S et al., Dig Surg 2009; 25(6):445

Microwave ablation of liver tumours

- MWA zones larger than for RFA
- Rapid heating
- Local vessels cause less deflection
- No pathological difference in degree of necrosis
- (Lower recurrence rates)

Summary: An evolving paradigm

The Past 2000

Not resectable (80-90%)

The Present 2013

Adam R. ASCO 2007, Abdalla et al Ann Surg Oncol 2006; 13(10

Overall summary

- Too few patients with potentially curable disease referred
- Definition of resectability has changed
- Chemotherapy does improve long-term outcome (perioperative or adjuvant)
- Risks of prolonged systemic therapy must be weighed against benefits
- Liver targeted therapies (DEBIRI, SIRT) appear to offer survival benefit, but need to better define treatment group
- Minimally invasive tissue ablation complements resection
- Individualized, multidisciplinary approach required to optimize outcomes

